
Auca Source Manual
Linus Arver

0.0.1.4-0-gfa4e4dc

2014-09-05 11:11:06 -0700

Contents
1 Introduction 1
2 auca.lhs 1
3 AUCA/Option.lhs 3
4 AUCA/Core.lhs 5

4.1 Event Handling . 6
4.2 Key Handling . 6

5 AUCA/Util.lhs 9
6 AUCA/Meta.lhs 11

1 Introduction
auca is a program that automatically executes an arbitrary command based on the modi-
fication of a file or set of files.

2 auca.lhs
{-# LANGUAGE PackageImports #-}
{-# LANGUAGE RecordWildCards #-}

module Main where

Email: X@Y.Z, where Z is edu, Y is ucla, and X is linus.
Website: http://listx.github.io.
This document is generated from the sources from the latest commit. The full hash of this commit is

fa4e4dcda7d3cb666e8c731357be8df9c30566e8.

1

http://listx.github.io
http://www.github.com/listx/auca/commit/fa4e4dcda7d3cb666e8c731357be8df9c30566e8

import "monads-tf" Control.Monad.State
import Data.List (nub)
import System.IO
import System.Directory
import System.Environment
import System.Exit
import System.INotify

import AUCA.Core
import AUCA.Option
import AUCA.Util

main checks for various errors before passing control over to prog.
main :: IO ()
main = do

hSetBuffering stdout NoBuffering
hSetBuffering stderr NoBuffering
args' <- getArgs
opts@Opts{..} <- (if null args' then withArgs ["--help"] else id) $ getOpts
errNo <- argsCheck opts
when (errNo > 0) $ exitWith $ ExitFailure errNo
files <- if null list

then return []
else return . nub . filter (not . null) . lines =<< readFile list

fs <- mapM doesFileExist file -- e.g., --file x --file y --file z
-- e.g., --list x (and files defined in file x)
flist <- mapM doesFileExist files
errNo' <- filesCheck fs flist
when (errNo' > 0) $ exitWith $ ExitFailure errNo
let filesMaster = nub $ file ++ files
helpMsg opts (head filesMaster)
prog opts filesMaster

argsCheck rejects any obviously illegal arguments.
argsCheck :: Opts -> IO Int
argsCheck Opts{..}

| null commands && null command_simple
= errMsgNum "--command or --command-simple must be defined" 1

| null file && null list
= errMsgNum "either --file or --list must be defined" 1

| otherwise = return 0

filesCheckmakes sure that all files defined by the user actually exist in the filesystem.
-- Verify that the --file and --list arguments actually make sense.
filesCheck :: [Bool] -> [Bool] -> IO Int
filesCheck fs flist

| any (==False) fs

2

= errMsgNum "an argument to --file does not exist" 1
| any (==False) flist

= errMsgNum "a file defined in --list does not exist" 1
| otherwise = return 0

prog initializes the inotify API provided by the Linux kernel. We simply tell the API to
check for any file modifications on the list of files in filesToWatch, with the addWD helper
function defined in AUCA.Core. We then move on and enter into keyHandler, a simple loop
that checks for manual key presses by the user. The calls to disable buffering on STDIN
allow keyHandler to detect individual key presses at a time.
prog :: Opts -> [FilePath] -> IO ()
prog opts@Opts{..} filesToWatch = do

let
comDef = if null command_simple

then (head commands)
else command_simple ++ " " ++ (head filesToWatch)

tb = TimeBuffer
{ bufSeconds = fromIntegral buffer_seconds
, bufSecStockpile = 0
}

inotify <- initINotify
putStrLn "\nFiles to watch:\n"
mapM_ putStrLn filesToWatch
mapM_ (\f -> addWD inotify f (eventHandler comDef f inotify)) filesToWatch
hSetBuffering stdin NoBuffering
hSetEcho stdin False -- disable terminal echo
let

appState = AppState
{ timeBuffer = tb
, comDef = comDef
, comSimpleFilePath = head filesToWatch
, inotify = inotify
, opts = opts
}

evalStateT keyHandler appState

3 AUCA/Option.lhs
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE RecordWildCards #-}

module AUCA.Option where

import System.Console.CmdArgs.Implicit

import AUCA.Meta
import AUCA.Util

3

data Opts = Opts
{ commands :: [String]
, command_simple :: String
, file :: [FilePath]
, list :: FilePath
, buffer_seconds :: Int
} deriving (Data, Typeable, Show, Eq)

progOpts is the data structure that actually defines all options and also describes their
help messages.
progOpts :: Opts
progOpts = Opts

{ commands = def &= typ "COMMAND(S)"
&= help "command(s) to execute; up to 10 (hotkeyed to 1-0)"

, command_simple = def &= typ "COMMAND" &= name "C"
&= help (unwords

["command to execute; it takes the first file, and calls command"
, "after it; e.g., `-C lilypond -f foo.ly' will translate to"
, "`lilypond foo.ly' as the default command"
])

, file = def
&= help (unwords

["file(s) to watch; can be repeated multiple times to define"
, "multiple files"
])

, list = def
&= help "list of files to watch"

, buffer_seconds = 2
&= help "minimum interval of seconds to process file changes/keystrokes"

}
&= details

["Notes:"
, ""
, " All commands are passed to the default shell."
]

getOpts is the custom IO action that gets the options from the environment. It also
explicitly sets the ‘-h’ and ‘-v’ flags, to override the ones given by CmdArgs (which define
‘-?’ as --help and ‘-v’ as ‘--verbose’).
getOpts :: IO Opts
getOpts = cmdArgs $ progOpts

&= summary (_PROGRAM_INFO ++ ", " ++ _COPYRIGHT)
&= program _PROGRAM_NAME
&= help _PROGRAM_DESC
&= helpArg [explicit, name "help", name "h"]
&= versionArg [explicit, name "version", name "v", summary _PROGRAM_INFO]

4

helpMsg is the function that gets called if the user requests for help interactively by
pressing the ‘h’ key. It is also displayed on startup.
helpMsg :: Opts -> FilePath -> IO ()
helpMsg Opts{..} f = do

mapM_ showCom $ if null commands
then [("0", command_simple ++ " " ++ f)]
else zip (map show [(0::Int)..9]) commands

putStrLn "press `h' for help"
putStrLn "press `q' to quit"
putStrLn $ unwords

["press `d' to set the default command to another one from the"
, "command slot"
]

putStrLn $ "press any other key to execute the default command " ++
squote (colorize Blue comDef)

where
showCom :: (String, String) -> IO ()
showCom (a, b) = putStrLn $ "key "

++ squote (colorize Yellow a)
++ " set to "
++ squote (colorize Blue b)

comDef = if null commands
then command_simple ++ " " ++ f
else head commands

4 AUCA/Core.lhs
There are two main functions here — eventHandler and keyHandler. eventHandler hooks
into the inotify API for executing arbitrary commands, and keyHandler handles all inter-
active key presses by the user.
{-# LANGUAGE PackageImports #-}
{-# LANGUAGE RecordWildCards #-}

module AUCA.Core where

import Control.Monad
import "monads-tf" Control.Monad.State
import Data.Time.Clock
import System.Exit
import System.INotify
import System.Process

import AUCA.Option
import AUCA.Util

data AppState = AppState
{ timeBuffer :: TimeBuffer

5

, comDef :: String
, comSimpleFilePath :: FilePath
, inotify :: INotify
, opts :: Opts
}

data TimeBuffer = TimeBuffer
{ bufSeconds :: NominalDiffTime
, bufSecStockpile :: NominalDiffTime
}

4.1 Event Handling
We only execute the given command when the detected event is a modification event of
a file. We ignore all other types of events, but print out info messages to tell the user
what happened. If a file becomes ignored or deleted for some reason, we re-watch it.1
eventHandler :: String -> FilePath -> INotify -> Event -> IO ()
eventHandler comDef fp inotify ev = case ev of

Attributes{..} -> runCom'
Modified{..} -> runCom'
Ignored -> runCom'
DeletedSelf -> do

_ <- addWD inotify fp (eventHandler comDef fp inotify)
return ()

_ -> showInfo
where
showInfo = putStrLn ("File: " ++ fp ++ " Event: " ++ show ev)
runCom' = do

putStrLn []
showTime
putStr $ ": " ++ colorize Magenta "change detected on file " ++ squote fp
putStrLn $ "; executing command " ++ squote (colorize Blue comDef)
runCom $ cmd comDef

addWD is a simple wrapper function around the more general addWatch function pro-
vided by System.INotify.
addWD :: INotify -> FilePath -> (Event -> IO ()) -> IO WatchDescriptor
addWD inotify fp evHandler = addWatch inotify evs fp evHandler

where
evs = [Attrib, Modify, DeleteSelf]

4.2 Key Handling
The keypresses are interpreted through a buffer system. Essentially, this system works to
prevent spamming the keyHandler loop. I.e., if a user presses and holds down a key, with-

1Vim tends to delete and re-create files when saving a modification.

6

out a buffering system, the loop would execute the total number of keypresses that the
windowing system would allow. Even with a modest delay between keypresses, allow-
ing such a torrent of repeated keypresses to go through unabated would be undesirable.
Thus, keyHandler measures the amount of time taken to process a keypress, and adds it to
the buffer, called bufSecStockpile. If this stockpile adds up to the treshhold defined by
bufSeconds, we execute the latest keypress; otherwise, we add the amount taken by the
single keypress and add it to the stockpile.

Note that if the user waits a long time, that’s fine as the getChar function will take
that much longer to finish extracting the keypress.
keyHandler :: StateT AppState IO ()
keyHandler = do

appState@AppState{..} <- get
t1 <- lift getCurrentTime
c <- lift getChar
when (c == 'q') . lift $ do

killINotify inotify
exitSuccess

let
tb@TimeBuffer{..} = timeBuffer

t2 <- lift getCurrentTime
let

t3 = diffUTCTime t2 t1
stockpile = t3 + bufSecStockpile

if (stockpile >= bufSeconds)
then do

let
tb' = tb {bufSecStockpile = stockpile - bufSeconds}

put $ appState {timeBuffer = tb'}
keyHandler' c
keyHandler

else do
let

tb' = tb {bufSecStockpile = stockpile + t3}
put $ appState {timeBuffer = tb'}
keyHandler

The comHash and comKeys structures define the hotkeys available to the user if multiple
commands were defined.
keyHandler' :: Char -> StateT AppState IO ()
keyHandler' key

| key == 'h' = do
AppState{..} <- get
lift $ helpMsg opts comSimpleFilePath

| key == 'd' = do
appState@AppState{..} <- get
lift $ helpMsg opts comSimpleFilePath
lift . putStrLn $ colorize Cyan "swapping default command..."

7

c <- lift getChar
comHash <- getComHash
case lookup [c] comHash of

Just com -> do
let

opts' = opts
{ commands = swapElems (0, toInt c)

$ commands opts
}

put $ appState
{ comDef = com
, opts = opts'
}

lift $ helpMsg opts' comSimpleFilePath
_ -> do

lift . putStrLn . colorize Red $ unwords
["key"
, show c
, "is not a valid command slot"
]

| elem key comKeys = do
AppState{..} <- get
comHash <- getComHash
case lookup [key] comHash of

Just com -> do
lift $ putStrLn []
lift $ showTime
lift . putStr $ ": "

++ colorize Cyan "manual override"
++ " (slot "
++ colorize Yellow [key]
++ ")"

lift . putStrLn $ "; executing command "
++ squote (colorize Blue com)

lift . runCom $ cmd com
_ -> do

lift $ putStrLn []
lift . putStrLn $ "command slot for key "

++ squote (colorize Yellow [key]) ++ " is empty"
| otherwise = do

AppState{..} <- get
lift $ putStrLn []
lift showTime
lift . putStr $ ": " ++ colorize Cyan "manual override"
lift . putStrLn $ "; executing command "

++ squote (colorize Blue comDef)
lift . runCom $ cmd comDef

8

where
comKeys :: String
comKeys = concatMap show [(0::Int)..9]
getComHash = do

AppState{..} <- get
let

coms = commands opts
comSimple = command_simple opts

return $ if null coms
then [("0", comSimple ++ " " ++ comSimpleFilePath)]
else zip (map show [(0::Int)..9]) coms

runCom and cmd are the actual workhorses that spawn the external command defined
by the user. The output of the external command is colorized using the sed stream editor.
runCom :: CreateProcess -> IO ()
runCom com = do

(_, _, _, p) <- createProcess com
exitStatus <- waitForProcess p
showTime
putStrLn $ ": " ++ if (exitStatus == ExitSuccess)

then colorize Green "command executed successfully"
else colorize Red "command failed"

cmd :: String -> CreateProcess
cmd com = CreateProcess

{ cmdspec = ShellCommand $
(com ++ " 2>&1 | sed \"s/^/ " ++ colorize Cyan ">" ++ " /\"")

, cwd = Nothing
, delegate_ctlc = True
, env = Nothing
, std_in = CreatePipe
, std_out = Inherit
, std_err = Inherit
, close_fds = True
, create_group = False
}

5 AUCA/Util.lhs
module AUCA.Util where

import Data.Time.LocalTime
import System.IO

data Color
= Red

9

| Green
| Yellow
| Blue
| Magenta
| Cyan
deriving (Show, Eq)

colorize adds special ANSI escape sequences to colorize text for output in a terminal.
colorize :: Color -> String -> String
colorize c s = c' ++ s ++ e

where
c' = "\x1b[" ++ case c of

Red -> "1;31m"
Green -> "1;32m"
Yellow -> "1;33m"
Blue -> "1;34m"
Magenta -> "1;35m"
Cyan -> "1;36m"

e = "\x1b[0m"

errMsg and errMsgNum are helper functions to ease reporting simple errors.
errMsg :: String -> IO ()
errMsg msg = hPutStrLn stderr $ "error: " ++ msg

errMsgNum :: String -> Int -> IO Int
errMsgNum str num = errMsg str >> return num

squote quotes a string with single quotes. showTime displays the current local zoned
time.
squote :: String -> String
squote s = "`" ++ s ++ "'"

showTime :: IO ()
showTime = getZonedTime >>= putStr . show

swapElems swaps two elements in a list. It does nothing if any of the arguments are
invalid.
swapElems :: (Int, Int) -> [a] -> [a]
swapElems (a, b) xs

| null xs = xs
| length xs == 1 = xs
| a < 0 = xs
| b < 0 = xs
| a == b = xs
| a > (length xs - 1) = xs
| b > (length xs - 1) = xs
| b < a = swapElems (b, a) xs
| otherwise = preA

10

++ [xs!!b]
++ betweenAB
++ [xs!!a]
++ postB

where
preA = take a xs
betweenAB = drop (a + 1) $ take b xs
postB = drop (b + 1) xs

toInt :: Char -> Int
toInt c = case c of

'0' -> 0
'1' -> 1
'2' -> 2
'3' -> 3
'4' -> 4
'5' -> 5
'6' -> 6
'7' -> 7
'8' -> 8
'9' -> 9
_ -> 0

6 AUCA/Meta.lhs
This module mainly defines the metadata that comes with auca. Of particular note here
is the version number definition.
module AUCA.Meta where

_PROGRAM_NAME
, _PROGRAM_VERSION
, _PROGRAM_INFO
, _PROGRAM_DESC
, _COPYRIGHT :: String

_PROGRAM_NAME = "auca"
_PROGRAM_VERSION = "0.0.1.4"
_PROGRAM_INFO = _PROGRAM_NAME ++ " version " ++ _PROGRAM_VERSION
_PROGRAM_DESC = "execute arbitrary command(s) based on file changes"
_COPYRIGHT = "(C) Linus Arver 2011-2014"

11

	Introduction
	auca.lhs
	AUCA/Option.lhs
	AUCA/Core.lhs
	Event Handling
	Key Handling

	AUCA/Util.lhs
	AUCA/Meta.lhs

